Tear 12	Unit 1	Unit 2	Unit 3	Unit 4	Unit 5	Unit 6
Topic/Theme/	In this unit students will					
Focus	be introduced to	learn how to use	further their	discover further uses of	learn how to use vectors	deepen their
	discrete mathematics	matrices and complex	understanding of	calculus.	to describe lines and	understanding of
		numbers.	algebraic technique,		find distances.	discrete mathematics.
	They will cover		different types of	They will learn		
	fundamental skills such	They will learn	functions and curves.	fundamental skills such	They will cover	They will learn
	as:	fundamental skills such		as:	fundamental skill such	fundamental skills such
	Using Algorithms and	as:	They will learn	Calculating the mean	as:	as:
	the language of graphs	Using matrices in	fundamental skills such	value of a function.	Writing the equation of	Understanding
	to minimise distances.	arithmetic.	as:	Finding areas enclosed	a line in vector form.	Kuratowski's theorem
	Analysing upper and	Describing linear	Understanding how the	by curves and lines.	Deciding if lines in three	for planarity of a graph.
	lower bounds for the	transformations using	roots of a polynomial	Calculating volumes of	dimensions intersect or	Using flow
	travelling salesman	matrices and identifying	relate to its coefficients	revolution generated	are skew.	augmentation to
	problem.	invariant points and	Solving inequalities	when curves are rotated	Calculating the scalar	increase a flow through
	Looking for the	lines.	involving polynomials of	around the axes.	product of vectors and	a directed network.
	maximum flow through	Using inverses matrices	up to degree 4.		using it to find angles.	To use Gantt charts and
	a directed network using	in solving systems of	To sum sequences using		Finding points of	resource histograms to
	the value of a cut.	linear equations.	standard formulae and		intersection and	solve scheduling
	Using activity networks	Understanding and using	the method of		calculating distances	problems.
	to find a critical path.	complex numbers and	differences.		between points and	Using the simplex
	Analysing and finding	their conjugates.	Using proof by induction		lines.	algorithm to solve three
	optimum strategies for	Working with modulus-	to prove algebraic			dimensional linear
	two player zero sum	argument form and	statements and			programming problems
	games.	using Argand diagrams.	divisibility.			and zero sum games
	Formulating ad solving		Using Maclaurin series			with three strategies.
	linear programming		expansions.			Recognising and
	problems.		Using polar coordinates			analysing groups and
	Using binary operations		and sketching graphs in			subgroups and
	and modular arithmetic		polar form.			identifying
	to generate Cayley		Using the equations of			isomorphisms.
	tables.		parabolas, ellipses and			
			hyperbolae.			
			Using the definitions			
			and graphs of hyperbolic			
			functions.			1

Key vocabulary	Path	Order	Coefficient	Mean	Intersect	Planar
	Tree	Inverse	Critical	Rotate	Parallel	Subdivision
	Trail	Conform	Deduce	Interval	Skew	Augment
	Network	Invariant	Rational	Volume	Perpendicular	Duration
	Optimum	Real	Asymptote	Revolution		Feasible
	Constraint	Imaginary	Hyperbolic			Variable
	Identity	Modulus	/1			Axiom
	Inverse	Argument				